Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction

نویسندگان

  • Vladimir M. Krasnopolsky
  • Michael S. Fox-Rabinovitz
چکیده

A new practical application of neural network (NN) techniques to environmental numerical modeling has been developed. Namely, a new type of numerical model, a complex hybrid environmental model based on a synergetic combination of deterministic and machine learning model components, has been introduced. Conceptual and practical possibilities of developing hybrid models are discussed in this paper for applications to climate modeling and weather prediction. The approach presented here uses NN as a statistical or machine learning technique to develop highly accurate and fast emulations for time consuming model physics components (model physics parameterizations). The NN emulations of the most time consuming model physics components, short and long wave radiation parameterizations or full model radiation, presented in this paper are combined with the remaining deterministic components (like model dynamics) of the original complex environmental model--a general circulation model or global climate model (GCM)--to constitute a hybrid GCM (HGCM). The parallel GCM and HGCM simulations produce very similar results but HGCM is significantly faster. The speed-up of model calculations opens the opportunity for model improvement. Examples of developed HGCMs illustrate the feasibility and efficiency of the new approach for modeling complex multidimensional interdisciplinary systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Evaluating machine learning methods and satellite images to estimate combined climatic indices

The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...

متن کامل

A synoptic-climatology approach to increase the skill of numerical weather predictions over Iran

Simplifications used in regional climate models decrease the accuracy of the regional climate models. To overcome this deficiency, usually a statistical technique of MOS is used to improve the skill of gridded outputs of the Numerical Weather Prediction (NWP) models. In this paper, an experimental synoptic-climatology based method has been used to calibrate, and decrease amount of errors in GFS...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2006